azimuthal location - definizione. Che cos'è azimuthal location
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è azimuthal location - definizione

CONCEPT IN STATISTICS
Location family; Location model (statistics); Location parameters

Filming location         
  • Hollywood]], the movie neighborhood, before the development of [[location shooting]].
PLACE WHERE FILM OR TV SERIES IS PRODUCED
Location shoot; Shooting location; Substitute filming locations; Filming locations
A filming location is a place where some or all of a film or television series is produced, in addition to or instead of using sets constructed on a movie studio backlot or soundstage. In filmmaking, a location is any place where a film crew will be filming actors and recording their dialog.
Location Songs         
SWEDISH MUSIC PUBLISHER
The Location
Location Songs was a music publisher in Stockholm, Sweden. It was a follow-on to Cheiron Studios, which despite its success, was closed down in 2000.
Location library         
A COLLECTION OF VISUAL AND REFERENCES INFORMATION OF LOCATIONS, OR PLACES THAT MIGHT BE USED FOR FILMING OR PHOTOGRAPHY.
Location Library (Motion Pictures and Still Photography)
A location library or location archive is a collection of visual and references information, usually organized by a serial numbering system, descriptive keywords, geographic location (or more often than not a combination of the aforementioned) of locations, or places that might be used for filming or photography.

Wikipedia

Location parameter

In statistics, a location parameter of a probability distribution is a scalar- or vector-valued parameter x 0 {\displaystyle x_{0}} , which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

  • either as having a probability density function or probability mass function f ( x x 0 ) {\displaystyle f(x-x_{0})} ; or
  • having a cumulative distribution function F ( x x 0 ) {\displaystyle F(x-x_{0})} ; or
  • being defined as resulting from the random variable transformation x 0 + X {\displaystyle x_{0}+X} , where X {\displaystyle X} is a random variable with a certain, possibly unknown, distribution (See also #Additive_noise).

A direct example of a location parameter is the parameter μ {\displaystyle \mu } of the normal distribution. To see this, note that the probability density function f ( x | μ , σ ) {\displaystyle f(x|\mu ,\sigma )} of a normal distribution N ( μ , σ 2 ) {\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} can have the parameter μ {\displaystyle \mu } factored out and be written as:

g ( y μ | σ ) = 1 σ 2 π e 1 2 ( y σ ) 2 {\displaystyle g(y-\mu |\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {y}{\sigma }}\right)^{2}}}

thus fulfilling the first of the definitions given above.

The above definition indicates, in the one-dimensional case, that if x 0 {\displaystyle x_{0}} is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.

A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form

f x 0 , θ ( x ) = f θ ( x x 0 ) {\displaystyle f_{x_{0},\theta }(x)=f_{\theta }(x-x_{0})}

where x 0 {\displaystyle x_{0}} is the location parameter, θ represents additional parameters, and f θ {\displaystyle f_{\theta }} is a function parametrized on the additional parameters.